
Team 6 : EECS 595 Final Project Report

Ryan Deng
University of Michigan
zydeng@umich.edu

Yuqing Zhou
University of Michigan
zyq@umich.edu

Houming Chen
University of Michigan

houmingc@umich.edu

Abstract

In recent years, commonsense reasoning for
language understanding has received increas-
ing attention in the natural language process-
ing field. In this project, we apply the BERT-
based models to three benchmarks, Common-
senseQA, Conversational Entailment, and Ev-
eryday Actions in Text, to get knowledge of
these benchmarks driving the progress in this
area.

1 Introduction

Commonsense knowledge is knowledge unstated
but is obvious to most humans beings. (Cambria
et al., 2011). Although not stated, people can learn
such knowledge through their daily experiences
and from generalizing other commonsense knowl-
edge (Speer et al., 2008). However, studying com-
monsense knowledge can be very difficult for ma-
chines. Although lots of research has been done, it
is still a long way for machines to fully gain com-
monsense knowledge and apply them in Natural
Language Inferences (NLI) (Storks et al., 2019).

In recent years, natural language processing
(NLP) and commonsense reasoning have received
increasing attention, and many benchmarks have
been built to help on those studies (Storks et al.,
2019). Those benchmarks are important to the NLI
community because they provide good evaluations
for various approaches and models and have en-
couraged more studies on NLI (Storks et al., 2019).

In this paper, we worked on three benchmarks
related to commonsense reasoning: Common-
senseQA (Talmor et al., 2018), Conversation En-
tailment, and Everyday Action in Text (EAT). As
recent studies on BERT (Devlin et al., 2019) and
its variants have presented many state-of-the-art
results in a variety of NLP tasks. We developed
models mainly based on pre-trained BERT mod-
els and BERT variant models to do inference and

prediction on these three tasks.

1.0.1 CommonsenseQA
CommonsenseQA is a common tool for evaluat-
ing how well a machine can understand human
language and predict with it. People have used
several different data sets in the NLP area, and
there are four popular formats. For example, some
datasets have the answer to be “yes” or “no”, or a
unique answer choice for a multiple-choice insert
to a paragraph. This opens a question: Can we train
the commonsenseQA models to learn linguistic rea-
soning abilities? Our idea is simple: although the
format of questions and the related information can
differ across QA data sets, the underlying linguistic
understanding and reasoning abilities are largely
common. The underlying linguistic comprehension
and thinking skills are universal to a large degree.
So we start our project, by training models on a
set of seed QA data sets of different formats, we
construct a single pre-trained QA model, taking the
natural text as input without using format-specific
prefixes. Without using format-specific prefixes,
we take natural text as an input. We use Bert and
Roberta to predict the results for a given question
and find BERT has the best accuracy.

1.0.2 Conversation Entailment
The text entailment task, determining if a hypothe-
sis can be inferred from a given text, is an important
component in NLI (Storks et al., 2020). But few
works on the Conversation Entailment task have
been done. Some research (Zhang and Chai, 2009,
2010) paying attention to automated entailment
from conversational scripts used a probabilistic
framework with an augmented representation of
conversations which was a traditional way with-
out deep learning. In our project, we use several
modern models like BERT to predict whether a
hypothesis is entailed by the given conversation.

1.0.3 Everyday Action in Text (EAT)
Some researches focus on hypothetical inferences
of the language, which are defined as plausible
inference by Davis and Marcus (2015). The Every-
day Action in Text (EAT) is a plausible inference
benchmark that provides short stories about some
daily actions, and the task is to determine whether
the story is plausible or not. If the story is implausi-
ble, the model should also determine the breaking
point from which the story starts to be implausible.

In each sample, there is a short story that con-
sists of 5 or 6 sentences. Without the story context,
each sentence itself is consistent with the common-
sense, but the entire story can be implausible when
sentences are put together. For example, in the ex-
ample shown below, the story is implausible since
Tom cannot put on his gloves after he shredded his
gloves.

{”story”: [
”Tom put on his shoes.”,
”Tom packed a suitcase.”,
”Tom shredded his gloves.”,
”Tom put his hat on.”,
”Tom put on his gloves.”],
”label”: 0,
”breakpoint”: 4,
”id”: ”train 3” }

Therefore, the task can be separated into two
classification sub-tasks. The first sub-task is to
predict whether the entire story is plausible. La-
bel 0 is used to represent implausible stories and
label 1 is used to represent plausible stories, so
the task is to classify stories to 0/1. The second
sub-task is to predict the breakpoint of the story.
−1 is used to represent plausible stories that have
no breakpoints, and 1/2/3/4/5 are used to repre-
sent the stories that start to be implausible from the
2nd/3rd/4th/5th/6th sentence. Then the task is
to classify stories to −1/1/2/3/4/5.

In our project, we apply pre-trained BERT,
RoBERTa, and DeBERTa models to do the two
classification sub-tasks.

2 Computational Models

In this part, we are going to introduce what the data
looks like, what models we use and what hyperpa-
rameters we choose for each task.

2.1 CommonsenseQA
We intend to apply BERT (Devlin et al., 2019) and
also try RoBERTa (Liu et al., 2019) to see if we
can get better accuracy scores.

Fetching data: We found that the ”Common-
senseQA” dataset can be downloaded by calling
nlp.load dataset which is prepared and can be
used instantly.

Create model: We create a BERT-style en-
coder transformer and the task head for the task.
We use roberta-base as the model architecture in
Transformers’ AutoModels to further automate the
model.

Processing Data: To input the data into the
model, we first get the tokenizer corresponding
to our model, then we convert raw text to tokenized
text inputs.

Training Process: We set the constant seed to
make sure every time We can use the same data
to training the model. We also tried to change
different hyperparameters to get the best model.

2.1.1 Data Preprocessing
The training dataset is downloaded from Hugging-
Face Datasets. It has 9741 samples and the test
dataset has 1140 samples. There are four variables
in the dataset that are question, text, choices, and
answerKey. AnswerKey is used to verify. Here is
an example:

Example
question: The sanctions against the school were
a punishing blow, and they seemed to what the
efforts the school had made to change?
text: ignore, enforce, authoritarian, yell at, avoid
choices: A, B, C, D, E
answerKey: A

2.1.2 Models
We use the pre-trained RoBERTa and BERT model
from the Transformers package. Our target is to
predict the best answer from the text, then return
the corresponding choice.

Our best accuracy is 0.652 achieved by Bert
when the learning rate is 1e− 5 and the batch size
is 6.

2.2 Conversation Entailment
For the Conversation Entailment task, we try two
types of models, BERT (Devlin et al., 2019) and its
variant, RoBERTa (Liu et al., 2019).

2.2.1 Data Preprocessing
Before feeding the model with the data, we need
to process the data. The training dataset has 520
samples. There are four different types of the hy-
potheses in the dataset: belief , fact, desire and
intent. The distribution of the dataset is shown as
Table 2. In a sample, there are two items: one is to

Models Learning Rate Batch Size Results
BERT 1e− 5 2 0.60
BERT 1e− 5 3 0.611
BERT 1e− 5 4 0.639
BERT 1e− 5 6 0.652
BERT 1e− 5 10 0.641

RoBERTa 1e− 5 2 0.601
RoBERTa 1e− 5 3 0.615
RoBERTa 1e− 5 4 0.632
RoBERTa 1e− 5 6 0.649
RoBERTa 1e− 5 10 0.631

Table 1: Results and hyperparameters for Common-
senseQA

indicate the speaker and another one is to show the
utterance of the speaker, shown as follows.

Example 1 - Dialogue:
“speaker”: “A”,
“text”: “I ripped the ligaments in my right ankle.”,

“speaker”: “B”,
“text”: “Gosh.”,

“speaker”: “A”,
“text”: “Yeah so,”,

“speaker”: “B”,
“text”: “Exercise is not supposed to do that to
you.”

One example of the format of the hypothesis is
shown as follows.

Example 1 - Hypothesis:
”text”: ”SpeakerB thinks that exercise is not sup-
posed to hurt anyone”,
”tag”: ”h”

By observing the hypotheses in the dataset, we find
that the subject such as SpeakerB in Example 1
- Hypothesis does not appear in the utterances of
SpeakerA and SpeakerB. If we just concatenate
the text of the utterances as the input, it may miss
the information of the subjects which appears in
the hypotheses, affecting the performance of the
model. We add the information of the speakers at
the beginning of each utterance. So the processed
data looks like the following format:

SpeakerA says:“I ripped the ligaments in my right
ankle.”
SpeakerB says:“Gosh.”
SpeakerA says:“Yeah so,”
SpeakerB says: “Exercise is not supposed to do
that to you.”

Figure 1: BERT for sequence classification task (De-
vlin et al., 2019).

Then we concatenate all utterances of the dialogue
as a conversation that will be fed into the model
together with the hypothesis.

Type of Hypotheses No. of Samples Ratio
belief 178 34.2%
facts 249 47.9%

desire 32 6.2%
intent 54 10.4%

unknown 7 1.3%

Sum 520 100%

Table 2: Distribution of the dataset for Conversation
Entailment.

2.2.2 Models
We use the pre-trained model BERT (Devlin et al.,
2019) and its variant RoBERTa (Liu et al., 2019).
Our task is to predict whether the given hypoth-
esis can be inferred from the conversation. This
task can be classified as the sequence classification
task and the corresponding model is shown as Fig.
1. BERT takes a concatenation of two segments
that are sequences of tokens. In our task, the two
segments are the conversation and the hypothesis.
They are concatenated as a single input sequence to
BERT with special tokens delimiting them (Devlin
et al., 2019)(Liu et al., 2019), such as

[CLS], x0, ..., xN−1, [SEP], y0, ..., yM−1

x0, ..., xN−1 are the N tokens representing the con-
versation and y0, y1, ..., yM−1 are the M tokens
representing the hypothesis.

2.2.3 Implementations
We use a tokenizer to convert tokens to ids. Then
we compute the maximum length of the sequences.
We set a hyperparameter MAX LEN that is
larger than the maximum sequence length. If the
sequence length is shorter than MAX LEN , we
pad the sequence. When using BERT (‘bert-base-
uncased’), we set the MAX LEN = 512. When
using RoBERTa (‘roberta-base’ and ‘roberta-large’
), we choose a value roughly larger than the maxi-
mum sequence length as MAX LEN . Details are
shown in Table 3.

Models MAX LEN
BERT 512

RoBERTa 440

Table 3: The maximum length set for each model in
the Conversation Entailment task.

We have tested different splitting ratios and dif-
ferent batch sizes. Finally, we set the hyperparam-
eter split ratio = 0.2, which means 20% of the
dataset is used for validation and 80% is used for
training. For the batch size, limited by Tesla T4
provided by Colab, the largest batch size for BERT
is 8 and the largest batch size for RoBERTa is 4.
We also use cross-validation to search for a bet-
ter learning rate for BERT. These hyperparameters
used for the final model are shown in Table 4.

Models BERT RoBERTa
Learning Rate 5e− 6 1e− 6

Batch Size 8 4

Table 4: Some hyperparameters for each model in the
Conversation Entailment task.

2.3 Everyday Action in Text(EAT)
2.3.1 Split the Data set
The training data set contains 1044 samples. In
each sample, there is a short story that consists of 5
or 6 sentences, a label indicating whether the story
is plausible, and a break point indicating the first
sentence after which the story stops making sense.

Among the 1044 samples in the data set, 522 of
them are plausible and the other 522 of them are
implausible. For each plausible story, there is an
implausible story that is similar to it. Therefore,
the 1044 samples can be grouped into 522 pairs. In
each pair, the two stories are different by only one
sentence. For example, the samples “train 3” and

“train 806” are shown below. They are different
by only one sentence but have different plausibility,
so these two samples forms a pair.

{”story”: [
”Tom put on his shoes.”,
”Tom packed a suitcase.”,
”Tom shredded his gloves.”,
”Tom put his hat on.”,
”Tom put on his gloves.”],
”label”: 0,
”breakpoint”: 4,
”id”: ”train 3” }

{”story”: [
”Tom put on his shoes.”,
”Tom packed a suitcase.”,
”Tom shredded his gloves.”,
”Tom put his hat on.”,
”Tom opened the front door and went out.”],
”label”: 1,
”breakpoint”: -1,
”id”: ”train 806” }

Therefore, in order to make the evaluation better
reflect the real performance of the model, we split
the data by pairs. That is, after grouping the 1044
samples into 522 pairs, we split them into 422/100
as the train set and valid set. Therefore, the train
set contains 844 samples and the valid set contains
200 samples.

2.3.2 Models and Implementation
Both the two tasks of EAT are classification tasks.
While the first task is a binary classification: pre-
dicting plausible/implausible. The second task re-
quires the model to classify the story into one of
the six classes: −1/1/2/3/4/5 for the break point.

We applied BERT (Devlin et al., 2019) model
and its variants RoBERTa (Liu et al., 2019) and
DeDEBETa (He et al., 2020) to this task. We
have trained 6 pre-trained models: bert-base-
uncased, bert-large-uncase, roberta-base, roberta-
large, deberta-base, and deberta-large. These mod-
els are all transformer models that contain trans-
former encoders. At first, the stories are padded
with MAX LEN = 480 and then are tokenized
into a sequence of tokens by the tokenizer of the
pre-trained model. The transformer encoder then
receives this sequence of tokens and encodes them
to vectors. The first token ‘[CLS]’ will be encoded
as a class label that represents a sentence-level clas-
sification. Then we pass this class label vector into
two single layers of a linear classifier. The first clas-
sifier gives a two-dimensional output for predicting
the plausibility, and the second classifier gives a

6-dimensional output for predicting the breakpoint.
Then the final loss will be calculated by adding up
the cross-entropy losses for this two classification.
Finally, We use the AdamW optimizer to optimize
this loss function. The structure of the model is
shown in Fig. 2.

After trying different hyperparameters, the hy-
perparameters that we chose are shown in Table
5. Other hyperparameters like dropout rates are
consistent with the default configuration of the pre-
trained model.

Each model is trained for 200 epochs, and af-
ter each epoch, the accuracy of sub-task 1 and the
macro-F score of sub-task 2 are calculated on the
validation set. The best performances on the vali-
dation set will be recorded to determine the perfor-
mance of the model and to choose the best model
to be our final model.

Model batch size learning rate
bert-base-uncased 16 3e-6
bert-large-uncased 4 3e-6

roberta-base 16 3e-6
roberta-large 4 2e-6
deberta-base 16 3e-6
deberta-large 2 3e-6

Table 5: Hyperparameters for EAT Model

Figure 2: Model used for the EAT task

3 Experimental Results

3.1 CommonsenseQA

Through trying different hyper-parameter, we
found the best learning rate for BERT and
RoBERTa is 1e − 5. After comparing 10 differ-
ent models, we get the best result that is 65.2%
achieved by BERT with a learning rate 1e− 5.

Models BERT RoBERT (large)
Learning Rate 1e− 5 1e− 5

Batch Size 6 6
Accuracy 65.2% 64.9%

Table 6: Results of CommonsenseQA

3.2 Conversation Entailment
By doing cross-validation, we find the best learning
rate for BERT is 5e − 6. If we split the dataset
into 5 subsets and use one of them in turn as the
validation set, then the best average accuracy on
the validation set over 5 experiments is 57.12%
when training 7 epochs, and the best accuracy for a
single experiment is 61% appearing at epoch = 4,
as shown in Table 7.

We also try two kinds of RoBERTa for this
task: roberta-base and roberta-large and find that
roberta-large performs better than roberta-base
and BERT. So we choose RoBERTa (roberta-large)
as our final model for the Conversation Entailment
task. As shown in Fig. 3, we fine-tuned RoBERTa

Models BERT RoBERTa (large)
Learning Rate 5e− 6 1e− 6

Batch Size 8 4
Accuracy 61% 64%

Epoch 4 32

Table 7: Best results and corresponding hyperparame-
ters in the Conversation Entailment task.

on our benchmark for 60 epochs, but the best per-
formance appeared at the 32th epoch, achieving an
accuracy higher than 64%.

Then, we further explore the performance of the
fine-tuned RoBERTa model on different subsets of
the validation set separated by the types of hypothe-
ses. When the accuracy on the whole validation set
is 60%, the accuracy on each subset is shown in
Table 8.

3.3 Everyday Action in Text(EAT)
For the EAT task, the performance of the model
is measured by the accuracy of sub-task 1 and the
macro-F score of sub-task 2 on the validation set.

We trained 6 pre-trained models for the task:
bert-base-uncased, bert-large-uncased, roberta-
base, roberta-large, deberta-base, deberta-large. Af-
ter fine-tuning the hyper-parameters, the best per-
formance on the validation set are shown in Table
9.

Figure 3: Training loss history and accuracy history on
the validation set of RoBERTa (large)

Number of Number of
Types Training Validation Accuracy

Samples Samples
belief 142 36 67%
fact 200 49 58%

desire 28 4 100%
intent 41 13 62%

n/a 5 2 0%

Total 416 104 60%

Table 8: Results of each type in the Conversation En-
tailment task using RoBERTa (large).

The deberta-large model gives the best result for
both task 1 and task 2. Therefore, we decide to use
the trained deberta-large model as our final model
for prediction.

4 Discussion

In this section, we are drawing some conclusions
from our results.

4.1 CommonsenseQA

The learning rate is an important hyper-parameter
when training the model, it controls how much
adjust the weights of the model. When we using a
pre-trained model, we first use a large learning rate,
and the result is not beautiful. Then we training
to use a small learning rate, and the result is much
better. Because high learning rates increase the

risk of losing previous knowledge. Most of the pre-
trained model has been well trained, use a small
learning rate will not cause the weights too early
and too much.

Batch size is a slider on the training process.
Small batch size let the training process converges
quickly at the cost of noise. On the other side, the
large batch size lets the training process converges
slowly with the accurate result of the error slope.

4.2 Conversation Entailment

As shown in Table 2 and 8, the dataset of Conversa-
tion Entailment is unevenly distributed. Fact is the
most hypothesis among the dataset while desire has
the least proportion except the unknown hypothesis
type. However, the accuracy for the desire achieved
100% and the accuracy for the fact was the lowest
among the four hypothesis types, achieving only
58%. The BERT-based model may be better at
capturing the features of the data with desire and
belief hypothesis types, leading to a good perfor-
mance on those data, and it could be not good at
capturing the characteristics of the data with fact
hypothesis type. Another reason that accounts for
the good performance on the subset with desire is
a coincidence. It is very easy to achieve a higher
accuracy or a lower accuracy by chance since it
has only 4 samples of the desire type. The reason
for the worst performance on the subset with the
unknown hypothesis type is the same.

We also can find it is reasonable to set the split
ratio relatively high, i.e., distributing more samples
into the validation set, due to the small size of
the whole dataset. If only having a few dozen
samples for validation, it is very likely to achieve
a high accuracy, which is unconvincing. Because
this good performance is likely caused by chance
and it may exist more samples whose hypothesis
types are preferred by the model.

Another finding is the problem of overfitting.
Due to the limited size of the dataset and the com-
plexity of the model, it is easy to overfit. So we
have to choose a small learning rate and a relatively
large batch size to overcome the problem. For the
BERT, the best performance usually occurs in 10
epochs. For the RoBERTa, as shown in Fig. 3,
although there exists fluctuation in the validation
accuracy’s trend, we can see the best performance
occurs at the 32th epoch. After that, the accuracy
has a decreasing trend even though the training loss
is decreasing, which is a mark of overfitting. So

Model T1 Acc T2 macro-precision T2 macro-recall T2 macro-F
Bert-base-uncased 0.7000 0.3674 0.3229 0.3359
Bert-large-uncased 0.7500 0.4793 0.3558 0.3800

Roberta-base 0.7100 0.3419 0.2963 0.3018
Roberta-large 0.7650 0.5276 0.3745 0.3972
Deberta-base 0.6850 0.4227 0.3014 0.3213
Deberta-large 0.8450 0.5494 0.5370 0.5338

Table 9: Performance of different models in the EAT task

we need to control the number of iterations during
the training.

4.3 Everyday Action in Text(EAT)

4.3.1 Bias in the set and rare classes
Although the number of plausible samples and im-
plausible samples are the same, in the implausible
samples, the distribution of the breakpoints is not
even. Among the 522 implausible samples, the
number of stories having breakpoint at 1, 2, 3, 4
and 5 are 59, 87, 109, 262 and 5 respectively. The
distribution is shown in Fig. 4

Figure 4: Occurrences of different break points of im-
plausible stories in the EAT data set

We can see that the number of samples whose
breakpoints are 4 is significantly greater than
the numbers of samples having other breakpoints.
Also, The samples whose breakpoints are 5 is ex-
tremely rare. Therefore, it is expected that the
F-score for classifying 4 as the breakpoint would
be greater than the F-score for classifying other
breakpoints, because there are more samples for
the model to whether a story has the breakpoint at
4. On the contrary, it is expected that the F-score
for classifying 5 as the breakpoint would be very
low, because there are not many samples for the
model to learn when to predict that the breakpoint

of the story is 5.
Table 10 shows the classification report of the

DeBERTa-large model for sub-task 2. From the
table, we can see that the F-score for classifying
the breakpoint as 4 is the highest, which is higher
than other classes, and the F-score for classifying
the breakpoint as 5 is zero. This is consistent with
our expectation and is caused by the bias of the
data.

Since we are optimizing the macro-F scores of
the sub-task 2, although the number of samples
having breakpoints at 1, 2, 3 and 5 are less than the
number of samples whose breakpoints are 4, the F-
score of classifying the breakpoints as 1, 2, 3, or 5
are equally important as the F-score of classifying
the breakpoint as 4. Therefore, it is very important
to increase the F-score of classifying the breakpoint
as 1, 2, 3, and 5.

One simple way to decrease the number of false
positives of predicting breakpoint 5 is to check the
lengths of the story. If a story has only 5 sentences,
then the breakpoint can never be 5. Therefore, if
the model predicts breakpoint 5 for a 5-sentences
story, we can then change this predicted breakpoint
5 to breakpoint 4. However, since the model rarely
predicts 5, this trick won’t make much difference.

Another method is to change the loss function
by giving greater punishment on misclassifying 1,
2, 3, and 5. However, this might cause the F-score
of classifying the breakpoint as 4 to decrease, and
then there would be a trade-off between the micro-
F scores and the macro-F scores. We will try to
change the loss function and see whether we could
get better macro-F scores for sub-task 2 in future
studies.

4.3.2 Inconsistency of the two classifiers
The task requires to maximize the sub-task 1 accu-
racy and the sub-task 2 F-scores at the same time.
The two metrics are computed separately and added
up together at the end. Therefore, in our model, we
pass the class label produced by the transformer

breakpoint precision recall f1-score support
-1 0.8252 0.8500 0.8374 100
1 0.5625 0.7500 0.6429 12
2 0.6923 0.4091 0.5143 22
3 0.5625 0.4737 0.5143 19
4 0.6538 0.7391 0.6939 46
5 0.0000 0.0000 0.0000 1

Table 10: Classification report of the DeBERTa-large model for sub-task 2

encoded into 2 separate classifiers to get the best
result. However, since the two classifiers work sep-
arately, it is possible that output can be inconsistent
with each other, though they are consistent with
each other most of the time. That is, the model
might classify a story as plausible but also predicts
a positive breakpoint at the same time; also, the
model might classify a story as implausible but
predict −1 as the breakpoint.

This won’t a problem if we only want to get bet-
ter numerical results on this benchmark. However,
this will be a problem if the model is put in a real-
life application because we won’t expect the model
contradict to itself.

This problem can be solved if we only use the
breakpoint classifier, and predict that the story is
plausible if the classifier predicts a “−1” break-
point. However, this would make the accuracy for
sub-task 1 lower as the model only optimize the
cross-entropy loss of the breakpoint classification,
but it is worth if the model will be used in an appli-
cation.

4.3.3 Hyperparameters and Seed
When tuning parameters, we noticed that the pre-
trained BERT based models are very sensitive to
hyperparameters and even the seed. Many models
can not be improved when the learning rate is large
and sometimes, changing a seed might also cause
the training loss to fail to decrease and the model
to fail to learn. Therefore, it is important to try
different hyperparameters and seeds when training
these BERT based pre-trained models.

4.3.4 Error Analysis
Some researches classified commonsense into two
types: intuitive physics, i.e. how the physical world
works, and intuitive psychology, i.e. humans’ mo-
tives and behaviors (Gunning, 2018).

From comparing the samples that our model suc-
ceed in predicting the right results and the samples
that our model failed to predict the right result, we

find that our model is relatively good at detecting
the implausible story that is physically impossible,
which only requires intuitive physics, like riding a
disassembled bicycle or peel a banana that had al-
ready been peeled and sliced. However, our model
performs relatively poorly when it requires both
intuitive physics and intuitive psychology to deter-
mine the plausibility. Here, we show the following
sample as an example:

{”story”: [”John turned on the oven.”,
”John put the cake in the oven.”,
”John got the ice cream out.”,
”John put some ice cream in a red bowl.”,
”John put the red bowl in the oven.”],
”label”: 0,
”breakpoint”: 4,
”id”: ”train 922” }

Our model failed to give the right prediction for
this sample. In this story, it is physically possible
for John to put ice cream in a bowl and then put the
bowl in the oven. That is not normal, because no
one wants to put ice cream in an oven.

In this example, the model not only needs to
understand the physical properties of ice cream and
oven, which are intuitive physics but also needs to
understand that no one wants to eat a heated ice
cream, which is intuitive psychology. Samples like
this require the model to incorporate both intuitive
physics and intuitive psychology to determine the
plausibility, which is harder than applying only
intuitive physics. This might be the reason that our
model performs relatively poorly when it requires
both intuitive physics and intuitive psychology to
determine the plausibility.

This shows that although our models could un-
derstand some basic commonsense, there is still a
long way for them to understand and apply more
complicated commonsense in NLI.

References
Erik Cambria, Yangqiu Song, Haixun Wang, and Amir

Hussain. 2011. Isanette: A common and common
sense knowledge base for opinion mining. In 2011
IEEE 11th International Conference on Data Mining
Workshops, pages 315–322. IEEE.

Ernest Davis and Gary Marcus. 2015. Common-
sense reasoning and commonsense knowledge in ar-
tificial intelligence. Communications of the ACM,
58(9):92–103.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

David Gunning. 2018. Machine common sense con-
cept paper. arXiv preprint arXiv:1810.07528.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Robert Speer, Catherine Havasi, and Henry Lieberman.
2008. Analogyspace: Reducing the dimensionality
of common sense knowledge. In Aaai, volume 8,
pages 548–553.

Shane Storks, Qiaozi Gao, and Joyce Y Chai. 2019.
Recent advances in natural language inference: A
survey of benchmarks, resources, and approaches.
arXiv preprint arXiv:1904.01172.

Shane Storks, Qiaozi Gao, and Joyce Y. Chai. 2020.
Recent advances in natural language inference: A
survey of benchmarks, resources, and approaches.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. arXiv preprint arXiv:1811.00937.

Chen Zhang and Joyce Chai. 2009. What do we
know about conversation participants: Experiments
on conversation entailment. In Proceedings of the
SIGDIAL 2009 Conference, pages 206–215, London,
UK. Association for Computational Linguistics.

Chen Zhang and Joyce Chai. 2010. Towards conver-
sation entailment: An empirical investigation. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
756–766, Cambridge, MA. Association for Compu-
tational Linguistics.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1904.01172
http://arxiv.org/abs/1904.01172
https://www.aclweb.org/anthology/W09-3930
https://www.aclweb.org/anthology/W09-3930
https://www.aclweb.org/anthology/W09-3930
https://www.aclweb.org/anthology/D10-1074
https://www.aclweb.org/anthology/D10-1074

